
MATH2050C Selected Solution to Assignment 13

Supplementary Problems

1. Show that for x > 0, the sequence {an}, an = (1+x/n)n is strictly increasing and bounded
from above by

∑∞
k=0 x

k/k!.

Solution By Binomial Theorem, (1 + x/n)n =
∑n

k=0C
n
k (x/n)k. The general term is
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Hence
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≤
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.

{an} is bounded from above. Next, the k-th term in an+1 is(
1− 1

n + 1

)(
1− 2

n + 1

)
· · ·
(
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)
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which is greater than the k-th term of an, hence an < an+1.

2. Show that for each m ≥ 1, E(x) ≥
∑m

k=0 x
k/k! and conclude E(x) =

∑∞
k=0 x

k/k!.

Solution The k-th term in an is equal to(
1− 1

n

)(
1− 2

n

)
· · ·
(
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n

)
xk

k!
,

which is less than xk/k!. Hence for a fixed m, for all n ≥ m,

m∑
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Letting n→∞, we obtain
∑m

k=0 x
k/k! ≤ E(x). Now, letting m→∞,

∑∞
k=0 x

k/k! ≤ E(x).
From the two-way bound we conclude E(x) =

∑∞
k=0 x

k/k!.

3. Show that for x < 0, E(x) = limn→∞ an exists and E(x)E(−x) = 1.

Solution From the relation (1 + a)(1− a) = 1− a2 we have

(
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)n
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Noting that −x2/n2 > −1 for large n, by Bernoulli’s inequality ((1+a)n ≥ 1+na, a > −1),(
1− x2

n2

)n

≥ 1− n
x2
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n
.

We have
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n
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≤ 1 ,
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for all large n. By Squeeze Theorem we conclude

lim
n→∞

(
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)n

= 1 .

Applying the Quotient Rule, for x < 0,

E(x) ≡ lim
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.

4. Show that for x > 0, a, b ∈ R, xaxb = xa+b and (xy)a = xaya.

Solution First,

xaxb = E(a lnx)E(b lnx) = E(a lnx + b lnx) = E((a + b) lnx) = xa+b.

Next,
(xy)a = E(a lnxy) = E(a lnx + a ln y) = E(a lnx)E(a ln y) = xaya .


