MATH2050C Selected Solution to Assignment 13

Supplementary Problems

1. Show that for $x>0$, the sequence $\left\{a_{n}\right\}, a_{n}=(1+x / n)^{n}$ is strictly increasing and bounded from above by $\sum_{k=0}^{\infty} x^{k} / k!$.
Solution By Binomial Theorem, $(1+x / n)^{n}=\sum_{k=0}^{n} C_{k}^{n}(x / n)^{k}$. The general term is

$$
C_{k}^{n} \frac{x^{k}}{n^{k}}=\frac{n(n-1) \cdots(n-k+1)}{k!} \frac{x^{k}}{n^{k}}=\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) \cdots\left(1-\frac{k-1}{n}\right) \frac{x^{k}}{k!} \leq \frac{x^{k}}{k!} .
$$

Hence

$$
a_{n} \leq \sum_{k=0}^{n} \frac{x^{k}}{k!} \leq \sum_{k=0}^{\infty} \frac{x^{k}}{k!} .
$$

$\left\{a_{n}\right\}$ is bounded from above. Next, the k-th term in a_{n+1} is

$$
\left(1-\frac{1}{n+1}\right)\left(1-\frac{2}{n+1}\right) \cdots\left(1-\frac{k-1}{n+1}\right) \frac{x^{k}}{k!}
$$

which is greater than the k-th term of a_{n}, hence $a_{n}<a_{n+1}$.
2. Show that for each $m \geq 1, E(x) \geq \sum_{k=0}^{m} x^{k} / k!$ and conclude $E(x)=\sum_{k=0}^{\infty} x^{k} / k!$.

Solution The k-th term in a_{n} is equal to

$$
\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) \cdots\left(1-\frac{k-1}{n}\right) \frac{x^{k}}{k!},
$$

which is less than $x^{k} / k!$. Hence for a fixed m, for all $n \geq m$,

$$
\sum_{k=0}^{m}\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) \cdots\left(1-\frac{k-1}{n}\right) \frac{x^{k}}{k!} \leq a_{n} \leq E(x) .
$$

Letting $n \rightarrow \infty$, we obtain $\sum_{k=0}^{m} x^{k} / k!\leq E(x)$. Now, letting $m \rightarrow \infty, \sum_{k=0}^{\infty} x^{k} / k!\leq E(x)$.
From the two-way bound we conclude $E(x)=\sum_{k=0}^{\infty} x^{k} / k$!.
3. Show that for $x<0, E(x)=\lim _{n \rightarrow \infty} a_{n}$ exists and $E(x) E(-x)=1$.

Solution From the relation $(1+a)(1-a)=1-a^{2}$ we have

$$
\left(1+\frac{x}{n}\right)^{n}=\frac{\left(1-\frac{x^{2}}{n^{2}}\right)^{n}}{\left(1-\frac{x}{n}\right)^{n}}
$$

Noting that $-x^{2} / n^{2}>-1$ for large n, by Bernoulli's inequality $\left((1+a)^{n} \geq 1+n a, a>-1\right)$,

$$
\left(1-\frac{x^{2}}{n^{2}}\right)^{n} \geq 1-n \frac{x^{2}}{n^{2}}=1-\frac{x^{2}}{n} .
$$

We have

$$
1-\frac{x^{2}}{n} \leq\left(1-\frac{x^{2}}{n^{2}}\right)^{n} \leq 1
$$

for all large n. By Squeeze Theorem we conclude

$$
\lim _{n \rightarrow \infty}\left(1-\frac{x^{2}}{n^{2}}\right)^{n}=1
$$

Applying the Quotient Rule, for $x<0$,

$$
E(x) \equiv \lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}=\frac{\lim _{n \rightarrow \infty}\left(1-\frac{x^{2}}{n^{2}}\right)^{n}}{\lim _{n \rightarrow \infty}\left(1-\frac{x}{n}\right)^{n}}=\frac{1}{E(-x)}
$$

4. Show that for $x>0, a, b \in \mathbb{R}, x^{a} x^{b}=x^{a+b}$ and $(x y)^{a}=x^{a} y^{a}$.

Solution First,

$$
x^{a} x^{b}=E(a \ln x) E(b \ln x)=E(a \ln x+b \ln x)=E((a+b) \ln x)=x^{a+b} .
$$

Next,

$$
(x y)^{a}=E(a \ln x y)=E(a \ln x+a \ln y)=E(a \ln x) E(a \ln y)=x^{a} y^{a}
$$

