MATH2050C Selected Solution to Assignment 13

Supplementary Problems

1. Show that for x > 0, the sequence $\{a_n\}, a_n = (1 + x/n)^n$ is strictly increasing and bounded from above by $\sum_{k=0}^{\infty} x^k/k!$.

Solution By Binomial Theorem, $(1 + x/n)^n = \sum_{k=0}^n C_k^n (x/n)^k$. The general term is

$$C_k^n \frac{x^k}{n^k} = \frac{n(n-1)\cdots(n-k+1)}{k!} \frac{x^k}{n^k} = \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \cdots \left(1 - \frac{k-1}{n}\right) \frac{x^k}{k!} \le \frac{x^k}{k!} .$$

Hence

$$a_n \le \sum_{k=0}^n \frac{x^k}{k!} \le \sum_{k=0}^\infty \frac{x^k}{k!} \; .$$

 $\{a_n\}$ is bounded from above. Next, the k-th term in a_{n+1} is

$$\left(1-\frac{1}{n+1}\right)\left(1-\frac{2}{n+1}\right)\cdots\left(1-\frac{k-1}{n+1}\right)\frac{x^k}{k!}$$

which is greater than the k-th term of a_n , hence $a_n < a_{n+1}$.

2. Show that for each $m \ge 1$, $E(x) \ge \sum_{k=0}^{m} x^k/k!$ and conclude $E(x) = \sum_{k=0}^{\infty} x^k/k!$. Solution The k-th term in a_n is equal to

$$\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right)\cdots\left(1-\frac{k-1}{n}\right)\frac{x^k}{k!}$$

which is less than $x^k/k!$. Hence for a fixed m, for all $n \ge m$,

$$\sum_{k=0}^{m} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \cdots \left(1 - \frac{k-1}{n}\right) \frac{x^k}{k!} \le a_n \le E(x)$$

Letting $n \to \infty$, we obtain $\sum_{k=0}^{m} x^k/k! \le E(x)$. Now, letting $m \to \infty$, $\sum_{k=0}^{\infty} x^k/k! \le E(x)$. From the two-way bound we conclude $E(x) = \sum_{k=0}^{\infty} x^k/k!$.

3. Show that for x < 0, $E(x) = \lim_{n \to \infty} a_n$ exists and E(x)E(-x) = 1. Solution From the relation $(1 + a)(1 - a) = 1 - a^2$ we have

$$\left(1+\frac{x}{n}\right)^n = \frac{\left(1-\frac{x^2}{n^2}\right)^n}{\left(1-\frac{x}{n}\right)^n} \,.$$

Noting that $-x^2/n^2 > -1$ for large *n*, by Bernoulli's inequality $((1+a)^n \ge 1+na, a > -1)$,

$$\left(1 - \frac{x^2}{n^2}\right)^n \ge 1 - n\frac{x^2}{n^2} = 1 - \frac{x^2}{n}$$
.

We have

$$1 - \frac{x^2}{n} \le \left(1 - \frac{x^2}{n^2}\right)^n \le 1$$
,

for all large n. By Squeeze Theorem we conclude

$$\lim_{n \to \infty} \left(1 - \frac{x^2}{n^2} \right)^n = 1 \; .$$

Applying the Quotient Rule, for x < 0,

$$E(x) \equiv \lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n = \frac{\lim_{n \to \infty} \left(1 - \frac{x^2}{n^2}\right)^n}{\lim_{n \to \infty} \left(1 - \frac{x}{n}\right)^n} = \frac{1}{E(-x)} \ .$$

4. Show that for $x > 0, a, b \in \mathbb{R}$, $x^a x^b = x^{a+b}$ and $(xy)^a = x^a y^a$. Solution First,

$$x^{a}x^{b} = E(a\ln x)E(b\ln x) = E(a\ln x + b\ln x) = E((a+b)\ln x) = x^{a+b}.$$

Next,

$$(xy)^{a} = E(a \ln xy) = E(a \ln x + a \ln y) = E(a \ln x)E(a \ln y) = x^{a}y^{a}.$$